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INTRODUCTION 
 
 The microprocessor has proved to be the most significant development in 
electronics since the invention of the transistor. The first microprocessors required many 
discrete logic integrated circuits (IC’s) to form a complete computer, but in 1976 Intel 
introduced the 8048 as the first 8-bit single-chip microcomputer [1]. The 8048 was soon 
superseded by the 8051, variations of which are still widely used today. Over the years 
single-chip microcomputers have undergone steady evolution and are available with a 
wide range price, performance and capability levels. This has enabled them to be used to 
implement countless embedded systems. In some embedded systems a microcomputer 
may not require other IC’s, but typically additional digital logic is required to accomplish 
the desired task. For complex systems, this additional logic may be substantial. By using 
a programmable logic device (PLD) the additional digital logic can be implemented in a 
single IC; thus, greatly reducing the chip count in embedded systems. Several years ago 
at NASA Langley Research Center in Hampton, Virginia we developed a radiation hard 
version of the 8051 and coupled that with a Xilinx field programmable gate array (FPGA) 
to be used in reconfigurable embedded systems. 
 Not all embedded computer systems use a single-chip microcomputer. It has 
occasionally proved to be cost effective to dedicate a conventional personal computer 
(PC) to a single task; thus, effectively, making the PC serve as an embedded computer. It 
is quite common to implement high performance embedded systems using an industry 
standard backplane bus such as the PC-104. In addition miniature PC’s, smaller than PC-
104 modules, are available that can be used to implement embedded systems. It is 
possible to incorporating an FPGA’s into such systems to reduce component count and 
achieve reconfigurability. 

As an example, the authors have developed two such systems. The first one is a 
custom solution called the MERCAL (Minature Embedded Reconfigurable Computer 
And Logic) module [2,3]. The MERCAL module consists of a custom printed circuit 
board that contains a PC-based CPU board, in this case, a sub-credit card size DIMMPC 
from JumpTec, and a Xilinx FPGA. The programming pins on the Xilinx FPGA are 
directly connected to the parallel port on the DIMM PC, allowing it to re-program the 
FPGA at any time under software control. A group of the general-purpose I/O pins of the 
FPGA are connected to the PC’s ISA bus allowing for data transfer between the FPGA 
and the software on the PC during system operation. The application program that runs 
on the PC along with the FPGA configuration file can be uploaded to the PC so that the 
system is reconfigurable. 

A similar platform based on a PC-104 form factor has also been constructed by 
the authors and used in implementing a hardware/software application. In this case, a 
standard PC-104 CPU from WinSystems was combined with a Xilinx-based PC-104 
FPGA board from Associated Professional Systems (APS). The APS board provides the 
capability for the CPU to program the Xilinx FPGA by transferring programming data 
across the PC-104 bus. Once programmed, like the MERCAL, the CPU and the FPGA 
can exchange application data across the PC-104 bus during system operation. 

These and similar systems are a precursor of a new way to think about digital 
system design. This new paradigm has arrived because of the steady increase in the 
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capability of FPGA’s. Today FPGA’s are available with the equivalent of over a million 
logic gates. With these resources it is now possible to implement complex digital 
systems, including one or more microcomputers, inside a single FPGA. This capability 
presents the embedded system designer with exciting new opportunities along with 
daunting challenges.   

 
STATE-OF-THE-ART 
 

Many programmable logic companies have introduced devices that allow the user 
to combine general purpose processing with programmable logic on the same chip. Some 
of these devices include a dedicated hard-core microcontroller with FPGA-based logic, 
and others, like the Xilinx Microblaze, rely on a soft-core microcontroller that can be 
implemented inside an FPGA with user logic. 

Atmel Corporation offers a device it calls the FPSLIC, or Field Programmable 
System Level Integrated Circuit. The FPSLIC device comes in several configurations, but 
all include an 8-bit AVR microcontroller, memory that can be used to store program data 
and code for the microcontroller, and FPGA resources that can be used to implement 
application-specific user logic. 

The Atmel AT94KAL devices combine the AVR microcontroller core with 36K 
bytes of SRAM that can be used for data and instructions, and SRAM-based FPGA logic 
that can implement up to 40K gates of logic. The AVR microcontroller is equipped with 
an 8-bit hardware multiplier, 2 standard serial UARTS, and two 8-bit and one 16 bit 
timer/counters that can be configured in various counter, capture, and PWM modes. The 
general purpose I/O ports of the AVR are connected into the FPGA for interfacing to user 
logic, and in addition, there are 16 address lines from the AVR into the FPGA to provide 
device addressing and selection and 16 interrupt lines lead from the FPGA back to the 
AVR. The AT94KAL devices are fabricated in a 0.35 mm, 5-metal layer, low power 
CMOS process and provide 3.3V 33MHz PCI compliant outputs. The AVR 
microcontroller is capable of 19 MIPS performance at a 25 MHz clock speed. 

To support the FPSLIC devices, Atmel offers the System Designer tool, which 
combines third-party design entry, simulation and synthesis tools with Atmel developed 
place and route tools and third party compilers to provide a complete environment for 
developing FPSLIC applications. One of the highlights of the System Designer 
environment is the capability to co-simulate compiled application code running on the 
AVR microcontroller with full debugging support, along with VHDL or Verilog models 
of the user hardware to be implemented in the FPGA portion of the FPSLIC device. 

Actel Corporation offers the Platform8051 environment for implementing 
hardware/software systems. The environment is based on a soft-core version of the 
industry standard ASM51 processor, a standardized 8-bit 8051 processor core. Actel also 
has a number of  additional cores available to interface the 8051 core to a 10/100 
Ehternet, UART, I2C bus, and Serial Data Link Controller (SDLC). Platform8051 
includes the Actel Libro toolset for design entry, synthesis, place and route, and 
simulation, some of which are performed by included third-party tools, and a third-party 
compiler for the 8051 core. Radiation hardened hardware/software applications can be 
implemented in this architecture by utilizing Rad-Hard FPGAs available from Actel. 
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Altera Corporation offers the NIOS processor soft-cores for implementation in its 
programmable devices. The NIOS is a user configurable, general-purpose RISC 
processor which is available in 16-bit or 32-bit versions. Along with the NIOS core, 
Altera provides the SOPC Builder System which allows the user to accelerate time-
critical software algorithms by adding custom instructions to the Nios processor 
instruction set. Using SOPC, the user can add up to five new instructions to the NIOS 
CPU using either existing resources inside the NIOS core, or the user can actually add 
custom hardware to the NIOS core to execute these new instructions. In addition, the 
custom hardware can access memory or logic outside of the NIOS system. In addition to 
SOPC Builder, Actel provides the NIOS Developers Kit which includes their Quartus II 
software tools for design entry, synthesis, place and route, and synthesis, and a version of 
the GNU software development tools tailored to the NIOS core. 

Xilinx provides tools for implementing both PowerPC and MicroBlace processors 
within their FPGA’s. This paper will focus on the MicroBlaze. 

 
THE MICROBLAZE PROCESSOR 
  

Although the MicroBlaze will typically be programmed in C/C++, it is helpful if 
not necessary for a successful designer to possess a through understanding of MicroBlaze 
architecture. Xilinx provides extensive online MicroBlaze and development tools 
documentation. This can be obtained form www.xilinx.com or specifically at 
http://www.xilinx.com/ise/embedded/edk_docs.htm. The material in this and the 
following section was obtained primarily form the MicroBlaze Processor Reference 
Guide available at: http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf. 

MicroBlaze embedded soft core is a reduced instruction set computer (RISC) 
optimized for implementation in Xilinx field program able gate arrays (FPGAs). A block 
diagram of the MicroBlaze core is shown in Figure 1.  

 
Figure 1. The MicroBlaze core block diagram. 
 
 The MicroBlaze consists of thirty-two 32-bit general purpose registers R0 to R31, 
and two 32-bit special purpose registers. The special purpose registers are the Program 
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Counter (PC) and the Machine Status Register (MSR). The general purpose register R0 is 
also special in that when it is read the value returned is always 0. Other general purpose 
registers such as R14, R16, and R17 have special purposes in servicing interrupts, 
exceptions, and breaks. The instructions are 32-bits and are divided into two types, Type 
A and Type B. Type A instructions usually have two source registers and one destination 
register. Type B instructions contain a 16-bit immediate value, along with a source 
register, and a destination register. For example the execution of Type A instruction  
 

ADD R1, R2, R3  
 
causes the sum of R2 and R3 to be placed in R1. The execution of the Type B instruction 

 
ADDI R1, R2, 1234  

 
replaces the contents of R1 with the sum of 1234 and the contents of R2. The MicroBlaze 
instructions are executed in a three-segment pipeline consisting of Fetch, Decode, and 
Execute stages. The pipeline effectively enables one instruction per clock cycle to be 
executed except in those cases, such as branches, where the normal pipeline flow is 
disrupted. Delayed branches are provided to reduce the branch penalty.  
 Memory is byte addressable, using a 32-bit address, and data memory can be 
accessed as byte, half word (16-bits), or 32-bit words. Memory accesses must be data-
size aligned. For halfword access the least significant bit of the address is forced to 0, and 
for byte access the two least significant bits of the address are forced to 00. MicroBlaze is 
a Big-Endian processor with bit 0 as the most significant or left most bit and word bit 31 
the least significant or right most bit. Similarly the most significant byte of a word has the 
lowest address and the least significant byte has the highest address. 
 It is possible to implement instruction and data caches, and the user has 
considerable flexibility in how these are configured. MicroBlaze also features a debug 
interface to support JTAG based software debugging tools. 
 
THE MICROBLAZE BUS INTERFACE 

 
Separate instruction and data buses are provided that conform to IBM’s OPB (on-

chip Peripheral Bus) specifications. As shown in Figure 3-1, there are separate bus 
interface units for data access and instruction access. Each of these bus interface units is 
split into a Local Memory Bus (LMB) and IBM’s On-chip peripheral bus (OPB). The 
OPB can be used to connect to both on-chip and off-chip peripherals and memory. The 
LMB provides for efficient synchronous block RAM (BRAM) transfers at rates up to 125 
MHz for local memory systems. The MicroBlaze bus interfaces are available in six 
configurations as shown in Figure 2. MicroBlaze also provides 8 input and 8 output 
interfaces to Fast Simplex Link (FSL) busses. The FSL bus is used for dedicated 
communication channels. 

In Figure 2, IOPB and ILMB are the instruction interface to the OPB and LMB 
respectively. Similarly DOPB and DLMB are the data interface. The LMB is used for fast 
memory implemented internal to the FPGA. The OPB is use interface various 
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peripherals, that are implemented within the FPGA, including memory controllers that 
enable the use of large external memories. 

 

 
 

 Figure 2. The six MicroBlaze bus configurations. 
 
  
DEVELOPMENT REQUIREMENTS 

 
 In order to begin development of MicroBlaze applications the minimum set of 
required tools consists of the Xilinx Embedded Development Kit (EDK), the Xilinx 
Integrated Synthesis Environment (ISE), and a hardware development board. 
 At the time of preparing this paper the latest version of the EDK is the recently 
released 6.1. This EDK also requires the separate ISE 6.1i. This software can run on 
Windows 2000, Windows XP, or Solaris 2.8/2.9. The MicroBlaze can be implemented in 
various Xilinx FPGA’s ranging from Spartan II to Vertex II Pro devices. Because of the 
FPGA resources required by the MicroBlaze it is probably unreasonable to select devices 
with less capability than the Spartan IIE, even as a learning platform. For serious 
applications, Vertex or Spartan-III devices should be selected. Hardware development 
boards can be obtained form several sources including Avnet, Digilent, Memec Design, 
and Xilinx. A Base System Builder Wizard provides support for a few selected boards, 
and can be used to simplify implementations based on these selected boards. 

An inexpensive first step learning platform, that we have found useful, is the 
Digilent DE2 development board which contains a 200,000 gate equivalent Spartan IIE 
combined with the Digilent DIO1 board. These boards are shown in Figure 3, and are 
available for a total cost of about $150. They do not contain memory external to the 
FPGA and the size of the FPGA limits the application complexity; however, they do 
provide sufficient capability to implement designs that will develop proficiency with 
MicroBlaze. At VCU we are using these boards in labs associated with the junior level 
Computer Engineering class in Digital Systems. Information on these boards is available 
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at http://www.digilentinc.com/, and it is expected that Digilent will shortly introduce 
inexpensive boards with larger FPGA’s. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The Digilent DE2 and DIO1 boards. 
 
THE XILINX EMBEDDED DEVELOPMENT KIT 
 
 The Embedded Development Kit (EDK) available from Xilinx provides the 
hardware IP for the MicroBlaze processor and its peripherals, the Embedded System 
Tools (EST), and associated documentation. Hardcopies of the documentation are not 
provided, but can found online or in the “doc” sub-directory of the EDK. The software 
tools necessary for MicroBlaze development are contained in the EST. A GUI, the Xilinx 
Platform Studio (XPS), is used to invoke the tools in the EST.  

With the XPS a user can configure the MicroBlaze processor and it’s busses, 
connect the desired peripherals, compile and debug MicroBlaze application source code 
using GNU tools, develop and simulate the required VHDL code, and download to the 
FPGA. 
  
A GETTING STARTED TUTORIAL 
 

Space here does not permit a complete tutorial on using XPS, but the first few 
steps are provided to give some indication of how the XPS works and to help get the 
reader started. We expect to make one or more extensive tutorials, based on the latest 
version of the EDK, available at http://www.people.vcu.edu/~jhtucker/. For this getting 
started tutorial, we will use the Platform Studio flow. It is based on the EDK 6.1i (SP2) 
with the ISE 6.1i (SP3) running on a Windows XP system. Xilinx currently provides, 
available at http://www.xilinx.com/support/techsup/tutorials/edk_tutorials.htm, an EDK 
6.1 MicroBlaze tutorial using the Base System Builder Wizard for the Memec Design 
Virtex-II Pro board. Another useful tutorial, based on an older version of the EDK is 
available at http://www.eece.unm.edu/xup/spartan2emicroblaze.htm.  
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To use the XPS the steps are as follows: 

Shortcut to XPS_GUI.exe.lnk  
1. Open the XPS by selecting: Start à Xilinx Embedded Development Kit à Platform 
Studio. 
 

 
2. Select File à New Project à Platform Studio 
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3. We will target this design to run on the Digilab DE2 board containing a Spartan IIE 
XC2S200E in a PQ208 package. The design will be placed in the directory 
c:_MicroBlaze\ESC_example. Fill in the appropriate information in the Create New 
Project window and click on OK. When the windows appears asking if you want to start 
with an empty MHS file, click on Yes. After reading the next message box click on OK. 
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4. Select Project à Add/Edit Cores. 

 
5. At this point you are able to add various peripherals (the MicroBlaze is included here) 
as IP cores to your design, set up the desired bus connections, set up the ports to connect 
the cores to the interconnecting buses. You should reference available tutorials for 
examples of how to accomplish these tasks. 
 
6. The source code for your MicroBlaze application should be placed in the directory 
code using system.c as the file name. This is added to the project by selecting Project à 
Add Program Sources. 
 
7. You may use Project à View Schematic to see a schematic representation of your 
architecture. 
 
8. To implement the system you may use items under the tools menu or the appropriate 
buttons on the task bar. You may refine the technique later but initially you may want to 
use the following steps: 

1. Tools à Clean à All. 
2. Tools à Generate Libraries 
3. Tools à Compile Program Source 
4. Tools à Generate Netlist 
5. Tools à Generate Bitstream 
6. Tools à Update Bitstream 
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At this point you may configure and run on your hardware by opening the Impact 
program supplied with the ISE and download the file download.bit from the 
implementation directory. 

 
CONCLUSION 
 
 Programmable logic devices have evolved to the point that they contain sufficient 
resources to implement microcontrollers, peripherals, and other logic within a single 
PLD. Thus, the ability to produce system-on-a-chip devices is no longer restricted to 
specialized ASIC designers. It is now possible, using relatively inexpensive tools, for any 
designer with the sufficient knowledge to implement complex reconfigurable embedded 
systems in FPGA’s.  
 The answer the question posed by the title of the paper requires qualification. It is 
unlikely that FPGA softcores will entirely replace conventional microcontrollers; 
however, the advantages offered by this emerging trend are so great that in the future we 
expect it to be a dominant technology that cannot be ignored by embedded system 
designers. 
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